MathDB
Problems
Contests
National and Regional Contests
Saudi Arabia Contests
Saudi Arabia Pre-TST + Training Tests
2010 Saudi Arabia Pre-TST
3.1
(a-b+c)(1/a -1/b +1/c ) >=1 if a >= b>= c > 0 2010 Saudi Arabia Pre-TST 3.1
(a-b+c)(1/a -1/b +1/c ) >=1 if a >= b>= c > 0 2010 Saudi Arabia Pre-TST 3.1
Source:
December 28, 2021
algebra
inequalities
Problem Statement
Let
a
≥
b
≥
c
>
0
a \ge b \ge c > 0
a
≥
b
≥
c
>
0
. Prove that
(
a
−
b
+
c
)
(
1
a
−
1
b
+
1
c
)
≥
1
(a-b+c)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right) \ge 1
(
a
−
b
+
c
)
(
a
1
−
b
1
+
c
1
)
≥
1
Back to Problems
View on AoPS