MathDB
1980 VTRMC #6

Source:

August 11, 2020
linear algebra

Problem Statement

Given the linear fractional transformation of xx into f1(x)=2x1x+1,f_1(x) = \tfrac{2x-1}{x+1}, define fn+1(x)=f1(fn(x))f_{n+1}(x) = f_1(f_n(x)) for n=1,2,3,.n=1,2,3,\ldots. It can be shown that f35=f5.f_{35} = f_5. Determine A,B,C,DA,B,C,D so that f28(x)=Ax+BCx+D.f_{28}(x) = \tfrac{Ax+B}{Cx+D}.