MathDB
Problems
Contests
International Contests
IberoAmerican
1987 IberoAmerican
3
m must be a perfect square
m must be a perfect square
Source: IberoAmerican 1987 Q3
November 12, 2010
number theory unsolved
number theory
Problem Statement
Prove that if
m
,
n
,
r
m,n,r
m
,
n
,
r
are positive integers, and:
1
+
m
+
n
3
=
(
2
+
3
)
2
r
−
1
1+m+n\sqrt{3}=(2+\sqrt{3})^{2r-1}
1
+
m
+
n
3
=
(
2
+
3
)
2
r
−
1
then
m
m
m
is a perfect square.
Back to Problems
View on AoPS