MathDB
Two Chords and a 45 Degree Angle

Source: 2020 AMC 12B #12

February 6, 2020
AMC 12 BAMC 12AMC2020 AMC2020 AMC 12Bgeometry

Problem Statement

Let AB\overline{AB} be a diameter in a circle of radius 52.5\sqrt2. Let CD\overline{CD} be a chord in the circle that intersects AB\overline{AB} at a point EE such that BE=25BE=2\sqrt5 and AEC=45.\angle AEC = 45^{\circ}. What is CE2+DE2?CE^2+DE^2?
<spanclass=latexbold>(A)</span> 96<spanclass=latexbold>(B)</span> 98<spanclass=latexbold>(C)</span> 445<spanclass=latexbold>(D)</span> 702<spanclass=latexbold>(E)</span> 100<span class='latex-bold'>(A)</span>\ 96 \qquad<span class='latex-bold'>(B)</span>\ 98 \qquad<span class='latex-bold'>(C)</span>\ 44\sqrt5 \qquad<span class='latex-bold'>(D)</span>\ 70\sqrt2 \qquad<span class='latex-bold'>(E)</span>\ 100