MathDB
Set of polynomials

Source:

September 9, 2010
algebrapolynomialSequencecoefficientsIMO Shortlist

Problem Statement

Let F(n)F(n) be the set of polynomials P(x)=a0+a1x++anxnP(x) = a_0+a_1x+\cdots+a_nx^n, with a0,a1,...,anRa_0, a_1, . . . , a_n \in \mathbb R and 0a0=ana1=an1a[n/2]=a[(n+1)/2].0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}. Prove that if fF(m)f \in F(m) and gF(n)g \in F(n), then fgF(m+n).fg \in F(m + n).