Show that <I1MI2=<O1MO2
Source: Canadian Repêchage 2012: Problem 8
May 19, 2014
Asymptotegeometryincentergeometric transformationrotationgeometry proposed
Problem Statement
Suppose circles and , with centres and respectively, intersect at points and . Let the tangent on at point intersect for the second time at . Similarly, let the tangent on at point intersect for the second time at . Let be a point on which is on arc not containing and suppose line intersects at point . Denote the incentres of triangles and by and , respectively.*[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.1cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -0.9748626324969808, xmax = 13.38440254515721, ymin = 0.5680051903627492, ymax = 10.99430986899034; /* image dimensions */pair O_2 = (7.682929606970993,6.084708172218866), O_1 = (2.180000000000002,6.760000000000007), M = (4.560858774883258,8.585242858926296), B_2 = (10.07334553576748,9.291873850408265), A_2 = (11.49301008867042,4.866805580476367), B_1 = (2.113311869970955,9.759258690628950), A_1 = (0.2203184186713625,4.488514120712773);
/* draw figures */
draw(circle(O_2, 4.000000000000000));
draw(circle(O_1, 3.000000000000000));
draw((4.048892687647541,4.413249028538064)--B_2);
draw(B_2--A_2);
draw(A_2--(4.048892687647541,4.413249028538064));
draw((4.048892687647541,4.413249028538064)--B_1);
draw(B_1--A_1);
draw(A_1--(4.048892687647541,4.413249028538064));
/* dots and labels */
dot(O_2,dotstyle);
label("", (7.788512439159622,6.243082420501817), NE * labelscalefactor);
dot(O_1,dotstyle);
label("", (2.298205165350667,6.929370829727937), NE * labelscalefactor);
dot(M,dotstyle);
label("", (4.383466101076183,8.935444641311980), NE * labelscalefactor);
dot((4.048892687647541,4.413249028538064),dotstyle);
label("", (3.855551940133015,3.761885864068922), NE * labelscalefactor);
dot(B_2,dotstyle);
label("", (10.19052187145104,9.463358802255147), NE * labelscalefactor);
dot(A_2,dotstyle);
label("", (11.80066006232771,4.659339937672310), NE * labelscalefactor);
dot(B_1,dotstyle);
label("", (1.981456668784765,10.09685579538695), NE * labelscalefactor);
dot(A_1,dotstyle);
label("", (0.08096568938935705,3.973051528446190), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]Show that *Given a triangle ABC, the incentre of the triangle is defined to be the intersection of the angle bisectors of A, B, and C. To avoid cluttering, the incentre is omitted in the provided diagram. Note also that the diagram serves only as an aid and is not necessarily drawn to scale.