MathDB
Shifting endpoints of integral when it´s periodic

Source: Romanian District Olympiad 2002, Grade XII, Problem 4

October 7, 2018
calculusintegrationbreaking integralperiodic functionPeriodicity

Problem Statement

Let be a continuous and periodic function f:R[0,) f:\mathbb{R}\longrightarrow [0,\infty ) of period 1. 1. Show:
a) aR    aa+1f(x)dx=01f(x)dx. a\in\mathbb{R}\implies\int_a^{a+1} f(x)dx =\int_0^1 f(x) dx .
b) limn01f(x)f(nx)dx=(01f(x)dx)2. \lim_{n\to\infty} \int_0^1 f(x)f(nx) dx=\left( \int_0^1 f(x) dx \right)^2 .
C. Mortici