MathDB
Putnam 1962 B1

Source: Putnam 1962

May 21, 2022
Putnambinomial theoremBinomial

Problem Statement

Let x(n)=x(x1)(xn+1)x^{(n)}=x(x-1)\cdots (x-n+1) for nn a positive integer and let x(0)=1.x^{(0)}=1. Prove that (x+y)(n)=k=0n(nk)x(k)y(nk).(x+y)^{(n)}= \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}.