MathDB
a_1a_2(a_1 - a_2) + a_2a_3(a_2 - a_3) +...+ a_{n-1}a_n(a_{n-1} - a_n) \ge a_1a_n

Source: 2014 Saudi Arabia GMO TST II p4

July 26, 2020
algebrainequalities

Problem Statement

Let a1a2...an>0a_1 \ge a_2 \ge ... \ge a_n > 0 be real numbers. Prove that a1a2(a1a2)+a2a3(a2a3)+...+an1an(an1an)a1an(a1an)a_1a_2(a_1 - a_2) + a_2a_3(a_2 - a_3) +...+ a_{n-1}a_n(a_{n-1} - a_n) \ge a_1a_n(a_1 - a_n)