MathDB
Today's calculation of Integral 30

Source: 1990 Shibaura Institute of Technology

May 31, 2005
calculusintegrationalgebrapartial fractionscalculus computations

Problem Statement

A sequence {an}\{a_n\} is defined by an=01x3(1x)ndx (n=1,2,3.)a_n=\int_0^1 x^3(1-x)^n dx\ (n=1,2,3.\cdots) Find the constant number cc such that n=1(n+c)(anan+1)=13\sum_{n=1}^{\infty} (n+c)(a_n-a_{n+1})=\frac{1}{3}