MathDB
IMO LongList 1988 Trignometric Inequality

Source: IMO LongList 1988, Mongolia 5, Problem 55 of ILL

November 3, 2005
inequalitiestrigonometryinductionrearrangement inequalityalgebra unsolvedalgebra

Problem Statement

Suppose αi>0,βi>0\alpha_i > 0, \beta_i > 0 for 1in,n>11 \leq i \leq n, n > 1 and that i=1nαi=i=1nβi=π. \sum^n_{i=1} \alpha_i = \sum^n_{i=1} \beta_i = \pi. Prove that i=1ncos(βi)sin(αi)i=1ncot(αi). \sum^n_{i=1} \frac{\cos(\beta_i)}{\sin(\alpha_i)} \leq \sum^n_{i=1} \cot(\alpha_i).