MathDB
Ratio - AHSME 1982

Source:

December 25, 2005
ratio

Problem Statement

Two positive numbers xx and yy are in the ratio a:ba: b where 0<a<b0 < a < b. If x+y=cx+y = c, then the smaller of xx and yy is
<spanclass=latexbold>(A)</span> acb<spanclass=latexbold>(B)</span> bcacb<spanclass=latexbold>(C)</span> aca+b<spanclass=latexbold>(D)</span> bca+b<spanclass=latexbold>(E)</span> acba<span class='latex-bold'>(A)</span> \ \frac{ac}{b} \qquad <span class='latex-bold'>(B)</span> \ \frac{bc-ac}{b} \qquad <span class='latex-bold'>(C)</span> \ \frac{ac}{a+b} \qquad <span class='latex-bold'>(D)</span> \ \frac{bc}{a+b} \qquad <span class='latex-bold'>(E)</span> \ \frac{ac}{b-a}