IMO Shortlist 2009 - Problem C3
Source:
July 6, 2010
linear algebracombinatoricsrecursionSequenceIMO Shortlist
Problem Statement
Let be a positive integer. Given a sequence , , with or for each , , , the sequences , , and , , are constructed by the following rules: a_0 = b_0 = 1, a_1 = b_1 = 7, \begin{array}{lll}
a_{i+1} =
\begin{cases}
2a_{i-1} + 3a_i, \\
3a_{i-1} + a_i,
\end{cases} &
\begin{array}{l}
\text{if } \varepsilon_i = 0, \\
\text{if } \varepsilon_i = 1, \end{array}
& \text{for each } i = 1, \dots, n - 1, \$$15pt]
b_{i+1}=
\begin{cases}
2b_{i-1} + 3b_i, \\
3b_{i-1} + b_i,
\end{cases} &
\begin{array}{l}
\text{if } \varepsilon_{n-i} = 0, \\
\text{if } \varepsilon_{n-i} = 1, \end{array}
& \text{for each } i = 1, \dots, n - 1.
\end{array} Prove that .Proposed by Ilya Bogdanov, Russia