MathDB
Fraction Reducing to Positive Integer

Source:

February 15, 2009
Fractions

Problem Statement

If p p is a positive integer, then \frac {3p \plus{} 25}{2p \minus{} 5} can be a positive integer, if and only if p p is: <spanclass=latexbold>(A)</span> at least 3<spanclass=latexbold>(B)</span> at least 3 and no more than 35<spanclass=latexbold>(C)</span> no more than 35 <span class='latex-bold'>(A)</span>\ \text{at least }3 \qquad<span class='latex-bold'>(B)</span>\ \text{at least }3\text{ and no more than }35 \qquad<span class='latex-bold'>(C)</span>\ \text{no more than }35 <spanclass=latexbold>(D)</span> equal to 35<spanclass=latexbold>(E)</span> equal to 3 or 35 <span class='latex-bold'>(D)</span>\ \text{equal to }35 \qquad<span class='latex-bold'>(E)</span>\ \text{equal to }3\text{ or }35