MathDB
Purple Comet 2017 MS Problem 17

Source:

April 14, 2018
Purple Comet

Problem Statement

Let a0a_0, a1a_1, ..., a6a_6 be real numbers such that a0+a1+...+a6=1a_0 + a_1 + ... + a_6 = 1 and a0+a2+a3+a4+a5+a6=12a_0 + a_2 + a_3 + a_4 + a_5 + a_6 =\frac{1}{2} a0+a1+a3+a4+a5+a6=23a_0 + a_1 + a_3 + a_4 + a_5 + a_6 = \frac{2}{3} a0+a1+a2+a4+a5+a6=78a_0 + a_1 + a_2 + a_4 + a_5 + a_6 =\frac{7}{8} a0+a1+a2+a3+a5+a6=2930a_0 + a_1 + a_2 + a_3 + a_5 + a_6 =\frac{29}{30} a0+a1+a2+a3+a4+a6=143144a_0 + a_1 + a_2 + a_3 + a_4 + a_6 =\frac{143}{144} a0+a1+a2+a3+a4+a5=839840a_0 + a_1 + a_2 + a_3 + a_4 + a_5 =\frac{839}{840}
The value of a0a_0 is mn\frac{m}{n}, where mm and nn are relatively prime positive integers. Find m+nm + n.