Let a0, a1, ..., a6 be real numbers such that a0+a1+...+a6=1 and
a0+a2+a3+a4+a5+a6=21a0+a1+a3+a4+a5+a6=32a0+a1+a2+a4+a5+a6=87a0+a1+a2+a3+a5+a6=3029a0+a1+a2+a3+a4+a6=144143a0+a1+a2+a3+a4+a5=840839The value of a0 is nm, where m and n are relatively prime positive integers. Find m+n.