MathDB
Sum of Complex Recursive Series

Source: 2020 AMC 12A #22

January 31, 2020
AMCAMC 12AMC 12 A2020 AMC 12A2020 AMCseries

Problem Statement

Let (an)(a_n) and (bn)(b_n) be the sequences of real numbers such that (2+i)n=an+bni (2 + i)^n = a_n + b_ni for all integers n0n\geq 0, where i=1i = \sqrt{-1}. What is n=0anbn7n?\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?
<spanclass=latexbold>(A)</span>38<spanclass=latexbold>(B)</span>716<spanclass=latexbold>(C)</span>12<spanclass=latexbold>(D)</span>916<spanclass=latexbold>(E)</span>47<span class='latex-bold'>(A) </span>\frac 38\qquad<span class='latex-bold'>(B) </span>\frac7{16}\qquad<span class='latex-bold'>(C) </span>\frac12\qquad<span class='latex-bold'>(D) </span>\frac9{16}\qquad<span class='latex-bold'>(E) </span>\frac47