MathDB
Problems
Contests
International Contests
Austrian-Polish
2003 Austrian-Polish Competition
8
sum (-1)^{k+1} x_{k}^n >= (sum (-1)^{i} x_{k})^n for k=1 to 2003
sum (-1)^{k+1} x_{k}^n >= (sum (-1)^{i} x_{k})^n for k=1 to 2003
Source: Austrian Polish 2003 APMC
April 25, 2020
inequalities
Sum
algebra
Problem Statement
Given reals
x
1
≥
x
2
≥
.
.
.
≥
x
2003
≥
0
x_1 \ge x_2 \ge ... \ge x_{2003} \ge 0
x
1
≥
x
2
≥
...
≥
x
2003
≥
0
, show that
x
1
n
−
x
2
n
+
x
2
n
−
.
.
.
−
x
2002
n
+
x
2003
n
≥
(
x
1
−
x
2
+
x
3
−
x
4
+
.
.
.
−
x
2002
+
x
2003
)
n
x_1^n - x_2^n + x_2^n - ... - x_{2002}^n + x_{2003}^n \ge (x_1 - x_2 + x_3 - x_4 + ... - x_{2002} + x_{2003})^n
x
1
n
−
x
2
n
+
x
2
n
−
...
−
x
2002
n
+
x
2003
n
≥
(
x
1
−
x
2
+
x
3
−
x
4
+
...
−
x
2002
+
x
2003
)
n
for any positive integer
n
n
n
.
Back to Problems
View on AoPS