MathDB
n / (n-1)^k

Source: IMO Longlist 1989, Problem 61

September 18, 2008
inequalitiescalculusderivativefunctioninequalities unsolved

Problem Statement

Prove for 0<k1 0 < k \leq 1 and a_i \in \mathbb{R}^\plus{}, i \equal{} 1,2 \ldots, n the following inequality holds: \left( \frac{a_1}{a_2 \plus{} \ldots \plus{} a_n} \right)^k \plus{} \ldots \plus{} \left( \frac{a_n}{a_1 \plus{} \ldots \plus{} a_{n\minus{}1}} \right)^k \geq \frac{n}{(n\minus{}1)^k}.