MathDB
lnln limit

Source:

November 28, 2019
Sequenceslimitsreal analysis

Problem Statement

Let be a sequence (an)n1 \left( a_n \right)_{n\ge 1} with a1>0 a_1>0 and satisfying the equality an=an+1an+1+an, a_n=\sqrt{a_{n+1} -\sqrt{a_{n+1} +a_n}} , for all natural numbers n. n.
a) Find a recurrence relation between two consecutive elements of (an)n1. \left( a_n \right)_{n\ge 1} . b) Prove that limnlnlnann=ln2. \lim_{n\to\infty } \frac{\ln\ln a_n}{n} =\ln 2.