MathDB
2013-digit numbers wanted. sum of pairwise product of digits = 1 mod 4

Source: 2013 Argentina OMA Finals L3 p3

January 15, 2023
Digitsnumber theoryremainder

Problem Statement

Find how many are the numbers of 20132013 digits d1d2d2013d_1d_2…d_{2013} with odd digits d1,d2,,d2013d_1,d_2,…,d_{2013} such that the sum of 18091809 terms d1d2+d2d3++d1809d1810d_1 \cdot d_2+d_2\cdot d_3+…+d_{1809}\cdot d_{1810} has remainder 11 when divided by 44 and the sum of 203203 terms d1810d1811+d1811d1812++d2012d2013d_{1810}\cdot d_{1811}+d_{1811}\cdot d_{1812}+…+d_{2012}\cdot d_{2013} has remainder 11 when dividing by 44.