BMO 2015 #1: Inequality on a,b,c.
Source: BMO 2015 problem 1
May 5, 2015
inequalitiesBMO 2015algebra
Problem Statement
If and are positive real numbers, prove that\begin{align*}
a ^ 3b ^ 6 + b ^ 3c ^ 6 + c ^ 3a ^ 6 + 3a ^ 3b ^ 3c ^ 3 &\ge{ abc \left (a ^ 3b ^ 3 + b ^ 3c ^ 3 + c ^ 3a ^ 3 \right) + a ^ 2b ^ 2c ^ 2 \left (a ^ 3 + b ^ 3 + c ^ 3 \right)}.
\end{align*}(Montenegro).