MathDB
Problems
Contests
Undergraduate contests
Putnam
1979 Putnam
B6
Putnam 1979 B6
Putnam 1979 B6
Source:
April 8, 2022
college contests
Problem Statement
For
k
=
1
,
2
…
,
n
k=1,2 \dots, n
k
=
1
,
2
…
,
n
let
z
k
=
x
k
+
i
y
k
,
z_k=x_k+iy_k,
z
k
=
x
k
+
i
y
k
,
where the
x
k
x_k
x
k
and
y
k
y_k
y
k
are real and
i
=
−
1
i=\sqrt{-1}
i
=
−
1
. Let
r
r
r
bet the absolute value of the real part of
±
z
1
2
+
z
2
2
+
…
z
n
2
.
\pm \sqrt{z_1^2+z_2^2+\dots z_n^2}.
±
z
1
2
+
z
2
2
+
…
z
n
2
.
Prove that
r
≤
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
n
∣
.
r\leq |x_1|+|x_2|+ \dots +|x_n|.
r
≤
∣
x
1
∣
+
∣
x
2
∣
+
⋯
+
∣
x
n
∣.
Back to Problems
View on AoPS