MathDB
Putnam 1979 B6

Source:

April 8, 2022
college contests

Problem Statement

For k=1,2,nk=1,2 \dots, n let zk=xk+iyk,z_k=x_k+iy_k, where the xkx_k and yky_k are real and i=1i=\sqrt{-1}. Let rr bet the absolute value of the real part of ±z12+z22+zn2.\pm \sqrt{z_1^2+z_2^2+\dots z_n^2}. Prove that rx1+x2++xn.r\leq |x_1|+|x_2|+ \dots +|x_n|.