MathDB
2018 PUMaC Live Round 5.3

Source:

January 13, 2019
PuMACLive Round

Problem Statement

Let kk be the largest integer such that 2k2^k divides (n=125(i=0n(ni))2)(n=125(i=0n(ni)2)).\left(\prod_{n=1}^{25}\left(\sum_{i=0}^n\binom{n}{i}\right)^2\right)\left(\prod_{n=1}^{25}\left(\sum_{i=0}^n\binom{n}{i}^2\right)\right). Find kk.