MathDB
a(2n) \leq 2a(n)

Source: SRMO 2005

April 10, 2005
inequalitiesinductionalgebra proposedalgebra

Problem Statement

Suppose {a(n)}n=1\{a(n) \}_{n=1}^{\infty} is a sequence that: a(n)=a(a(n1))+a(na(n1))    n3 a(n) =a(a(n-1))+a(n-a(n-1)) \ \ \ \forall \ n \geq 3 and a(1)=a(2)=1a(1)=a(2)=1. Prove that for each n1n \geq 1 , a(2n)2a(n)a(2n) \leq 2a(n).