Let a and b be real numbers greater than 1 for which there exists a positive real number c, different from 1, such that 2(logac+logbc)=9logabc. Find the largest possible value of logab.<spanclass=′latex−bold′>(A)</span>2<spanclass=′latex−bold′>(B)</span>3<spanclass=′latex−bold′>(C)</span>2<spanclass=′latex−bold′>(D)</span>6<spanclass=′latex−bold′>(E)</span>3