Unit Cube and Octahedron
Source: 2012 AMC 12B Problem #19
February 29, 2012
geometry3D geometryoctahedronAMC
Problem Statement
A unit cube has vertices , and . Vertices , and are adjacent to , and for , vertices and are opposite to each other. A regular octahedron has one vertex in each of the segments , and . What is the octahedron's side length?
[asy]
import three;size(7.5cm);
triple eye = (-4, -8, 3);
currentprojection = perspective(eye);triple[] P = {(1, -1, -1), (-1, -1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, -1)}; // P[0] = P[4] for convenience
triple[] Pp = {-P[0], -P[1], -P[2], -P[3], -P[4]};// draw octahedron
triple pt(int k){ return (3*P[k] + P[1])/4; }
triple ptp(int k){ return (3*Pp[k] + Pp[1])/4; }
draw(pt(2)--pt(3)--pt(4)--cycle, gray(0.6));
draw(ptp(2)--pt(3)--ptp(4)--cycle, gray(0.6));
draw(ptp(2)--pt(4), gray(0.6));
draw(pt(2)--ptp(4), gray(0.6));
draw(pt(4)--ptp(3)--pt(2), gray(0.6) + linetype("4 4"));
draw(ptp(4)--ptp(3)--ptp(2), gray(0.6) + linetype("4 4"));// draw cube
for(int i = 0; i < 4; ++i){
draw(P[1]--P); draw(Pp[1]--Pp);
for(int j = 0; j < 4; ++j){
if(i == 1 || j == 1 || i == j) continue;
draw(P--Pp[j]); draw(Pp--P[j]);
}
dot(P); dot(Pp);
dot(pt(i)); dot(ptp(i));
}label("", P[1], dir(P[1]));
label("", P[2], dir(P[2]));
label("", P[3], dir(-45));
label("", P[4], dir(P[4]));
label("", Pp[1], dir(Pp[1]));
label("", Pp[2], dir(Pp[2]));
label("", Pp[3], dir(-100));
label("", Pp[4], dir(Pp[4]));
[/asy]