MathDB
Romania 1997

Source:

April 18, 2011
vectorratiogeometry proposedgeometry

Problem Statement

Let ABCDEFABCDEF be a convex hexagon, and let P=ABCDP= AB \cap CD, Q=CDEFQ = CD \cap EF, R=EFABR = EF \cap AB, S=BCDES = BC \cap DE, T=DEFAT = DE \cap FA, U=FABCU = FA \cap BC. Prove that
PQCD=QREF=RPAB\frac{PQ}{CD} = \frac{QR}{EF} = \frac{RP}{AB} if and only if STDE=TUFA=USBC\frac{ST}{DE} = \frac{TU}{FA} = \frac{US}{BC}