MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2023 Harvard-MIT Mathematics Tournament
10
2023 Algebra NT #10 \zeta= e^{2\pi i/99}
2023 Algebra NT #10 \zeta= e^{2\pi i/99}
Source:
February 28, 2024
algebra
complex numbers
Problem Statement
Let
ζ
=
e
2
π
i
/
99
\zeta= e^{2\pi i/99}
ζ
=
e
2
πi
/99
and
ω
e
2
π
i
/
101
\omega e^{2\pi i/101}
ω
e
2
πi
/101
. The polynomial
x
9999
+
a
9998
x
9998
+
.
.
.
+
a
1
x
+
a
0
x^{9999} + a_{9998}x^{9998} + ...+ a_1x + a_0
x
9999
+
a
9998
x
9998
+
...
+
a
1
x
+
a
0
has roots
ζ
m
+
ω
n
\zeta^m + \omega^n
ζ
m
+
ω
n
for all pairs of integers
(
m
,
n
)
(m, n)
(
m
,
n
)
with
0
≤
m
<
99
0 \le m < 99
0
≤
m
<
99
and
0
≤
n
<
101
0 \le n < 101
0
≤
n
<
101
. Compute
a
9799
+
a
9800
+
.
.
.
+
a
9998
a_{9799} + a_{9800} + ...+ a_{9998}
a
9799
+
a
9800
+
...
+
a
9998
.
Back to Problems
View on AoPS