MathDB
2023 Algebra NT #10 \zeta= e^{2\pi i/99}

Source:

February 28, 2024
algebracomplex numbers

Problem Statement

Let ζ=e2πi/99\zeta= e^{2\pi i/99} and ωe2πi/101\omega e^{2\pi i/101}. The polynomial x9999+a9998x9998+...+a1x+a0x^{9999} + a_{9998}x^{9998} + ...+ a_1x + a_0 has roots ζm+ωn\zeta^m + \omega^n for all pairs of integers (m,n)(m, n) with 0m<990 \le m < 99 and 0n<1010 \le n < 101. Compute a9799+a9800+...+a9998a_{9799} + a_{9800} + ...+ a_{9998}.