MathDB
Length of a Median

Source:

March 3, 2010
geometryratioparallelogramarea of a triangle

Problem Statement

Two medians of a triangle with unequal sides are 3 3 inches and 6 6 inches. Its area is 315 3 \sqrt{15} square inches. The length of the third median in inches, is: <spanclass=latexbold>(A)</span> 4<spanclass=latexbold>(B)</span> 33<spanclass=latexbold>(C)</span> 36<spanclass=latexbold>(D)</span> 63<spanclass=latexbold>(E)</span> 66 <span class='latex-bold'>(A)</span>\ 4 \qquad <span class='latex-bold'>(B)</span>\ 3 \sqrt{3} \qquad <span class='latex-bold'>(C)</span>\ 3 \sqrt{6} \qquad <span class='latex-bold'>(D)</span>\ 6 \sqrt{3} \qquad <span class='latex-bold'>(E)</span>\ 6 \sqrt{6}