MathDB
Ratio of Factorials

Source: 2016 USAMO 2

April 19, 2016
factorial2016 USAMO2016 USAMO Problem 2USAMOUSA(J)MOAMC

Problem Statement

Prove that for any positive integer kk, (k2)!j=0k1j!(j+k)!(k^2)!\cdot\displaystyle\prod_{j=0}^{k-1}\frac{j!}{(j+k)!}is an integer.