MathDB
Medians, Centroid, Concylic

Source: 0

April 28, 2009
symmetrygeometrypower of a point

Problem Statement

AL AL, BM BM, and CN CN are the medians of ABC \triangle ABC. K K is the intersection of medians. If C,K,L,M C,K,L,M are concyclic and AB \equal{} \sqrt 3, then the median CN CN = ?
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 3<spanclass=latexbold>(C)</span> 332<spanclass=latexbold>(D)</span> 3<spanclass=latexbold>(E)</span> None<span class='latex-bold'>(A)</span>\ 1 \qquad<span class='latex-bold'>(B)</span>\ \sqrt 3 \qquad<span class='latex-bold'>(C)</span>\ \frac {3\sqrt3}{2} \qquad<span class='latex-bold'>(D)</span>\ 3 \qquad<span class='latex-bold'>(E)</span>\ \text{None}