MathDB
Purple Comet 2009 HS Problem 23

Source:

April 21, 2012
geometryrectangleprobabilitynumber theoryrelatively prime

Problem Statement

Square ABCDABCD has side length 44. Points EE and FF are the midpoints of sides ABAB and CDCD, respectively. Eight 11 by 22 rectangles are placed inside the square so that no two of the eight rectangles overlap (see diagram). If the arrangement of eight rectangles is chosen randomly, then there are relatively prime positive integers mm and nn so that mn\tfrac{m}{n} is the probability that none of the rectangles crosses the line segment EFEF (as in the arrangement on the right). Find m+nm + n.
[asy] size(200); defaultpen(linewidth(0.8)+fontsize(10pt)); real r = 7; path square=origin--(4,0)--(4,4)--(0,4)--cycle; draw(square^^shift((r,0))*square,linewidth(1)); draw((1,4)--(1,0)^^(3,4)--(3,0)^^(0,2)--(1,2)^^(1,3)--(3,3)^^(1,1)--(3,1)^^(2,3)--(2,1)^^(3,2)--(4,2)); draw(shift((r,0))*((2,4)--(2,0)^^(0,2)--(4,2)^^(0,1)--(4,1)^^(0,3)--(2,3)^^(3,4)--(3,2))); label("A",(4,4),NE); label("A",(4+r,4),NE); label("B",(0,4),NW); label("B",(r,4),NW); label("C",(0,0),SW); label("C",(r,0),SW); label("D",(4,0),SE); label("D",(4+r,0),SE); label("E",(2,4),N); label("E",(2+r,4),N); label("F",(2,0),S); label("F",(2+r,0),S); [/asy]