MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
CMIMC Problems
2021 CMIMC
2.7
2021 Alg/NT Div 2 P7
2021 Alg/NT Div 2 P7
Source:
March 2, 2021
algebra
number theory
Problem Statement
For each positive integer
n
,
n,
n
,
let
σ
(
n
)
\sigma(n)
σ
(
n
)
denote the sum of the positive integer divisors of
n
.
n.
n
.
How many positive integers
n
≤
2021
n \leq 2021
n
≤
2021
satisfy
σ
(
3
n
)
≥
σ
(
n
)
+
σ
(
2
n
)
?
\sigma(3n) \geq \sigma(n)+\sigma(2n)?
σ
(
3
n
)
≥
σ
(
n
)
+
σ
(
2
n
)?
Proposed by Kyle Lee
Back to Problems
View on AoPS