MathDB
f(1/(1+2x))/f(x) indendent of x if f(x) = \frac{1 + Ax}{1 + Bx}

Source: 1965 Swedish Mathematical Competition p4

March 21, 2021
algebrafunctionrecurrence relationSequence

Problem Statement

Find constants A>BA > B such that f(11+2x)f(x)\frac{f\left( \frac{1}{1+2x}\right) }{f(x)} is independent of xx, where f(x)=1+Ax1+Bxf(x) = \frac{1 + Ax}{1 + Bx} for all real x1Bx \ne - \frac{1}{B}. Put a0=1a_0 = 1, an+1=11+2ana_{n+1} = \frac{1}{1 + 2a_n}. Find an expression for an by considering f(a0),f(a1),...f(a_0), f(a_1), ....