MathDB
Trig Log

Source:

December 31, 2005
trigonometrylogarithms

Problem Statement

If b>1b>1, sinx>0\sin x>0, cosx>0\cos x>0, and logbsinx=a\log_b \sin x = a, then logbcosx\log_b \cos x equals (A) 2logb(1ba/2)  (B) 1a2  (C) ba2  (D) 12logb(1b2a)  (E) none of these\text{(A)} \ 2\log_b(1-b^{a/2}) ~~\text{(B)} \ \sqrt{1-a^2} ~~\text{(C)} \ b^{a^2} ~~\text{(D)} \ \frac 12 \log_b(1-b^{2a}) ~~\text{(E)} \ \text{none of these}