MathDB
ICMC 2019/20 Round 2, Problem 3

Source: Imperial College Mathematics Competition 2019/20 - Round 2

August 7, 2020
college contests

Problem Statement

Let R\mathbb{R} denote the set of real numbers. A subset SRS\subseteq\mathbb{R} is called dense if any non-empty open interval of R\mathbb{R} contains at least one element in SS. For a function f:RRf:\mathbb{R}\to\mathbb{R}, let Of(x)\mathcal{O}_f(x) denote the set {x,f(x),f(f(x)),}\left\{x,f(x),f(f(x)),\ldots\right\}.
(a) Is there a function g:RRg:\mathbb{R}\to\mathbb{R}, continuous everywhere in R\mathbb{R} such that Og(x)\mathcal{O}_g(x) is dense for all xRx\in\mathbb{R} for all xRx\in\mathbb{R}?
(b) Is there a function h:RRh:\mathbb{R}\to\mathbb{R}, continuous at all but a single x0Rx_0\in\mathbb{R}, such that Oh(x)\mathcal{O}_h(x) is dense for all xRx\in\mathbb{R}?
Proposed by the ICMC Problem Committee