MathDB
SEEMOUS 2020 P4

Source:

May 2, 2020
real analysis

Problem Statement

Consider 0<a<T0<a<T, D=R\{kT+akZ}D=\mathbb{R}\backslash \{ kT+a\mid k\in \mathbb{Z}\}, and let f:DRf:D\to \mathbb{R} a TT-periodic and differentiable function which satisfies f>1f' > 1 on (0,a)(0, a) and f(0)=0,limxax<af(x)=+ and limxax<af(x)f2(x)=1.f(0)=0,\lim_{\substack{x\to a\\x<a}}f(x)=+\infty \text{ and }\lim_{\substack{x\to a\\ x<a}}\frac{f'(x)}{f^2(x)}=1.
[*]Prove that for every nNn\in \mathbb{N}^*, the equation f(x)=xf(x)=x has a unique solution in the interval (nT,nT+a)(nT, nT+a) , denoted xnx_n.[/*] [*]Let yn=nT+axny_n=nT+a-x_n and zn=0ynf(x)dxz_n=\int_0^{y_n}f(x)\text{d}x. Prove that limnyn=0\lim_{n\to \infty}{y_n}=0 and study the convergence of the series n=1yn\sum_{n=1}^{\infty}{y_n} and n=1nzn\sum_{n=1}^{n}{z_n}.