MathDB
f(q)= 1 + f(q/(1-2q))

Source: Israel Grosman Memorial Mathematical Olympiad 1995 p6

February 15, 2020
functional equationfunctionalalgebra

Problem Statement

(a) Prove that there is a unique function f:QQf : Q \to Q satisfying: (i) f(q)=1+f(q12q)f(q)= 1 + f\left(\frac{q}{1-2q}\right) for 0<q<120<q< \frac12 (ii) f(q)=1+f(q1)f(q)= 1 + f(q-1) for 1<q21<q\le 2 (iii) f(q)f(1q)=1f(q)f\left(\frac{1}{q}\right)=1 for all qQ+q\in Q^+ (b) For this function ff , find all rQ+r\in Q^+ such that f(r)=rf(r) = r