MathDB
Inequality for standardized normal samples

Source: Schweitzer 2009

November 13, 2009
inequalitiesvectorratioprobability and stats

Problem Statement

Let Z1,Z2,Zn Z_1,\,Z_2\dots,\,Z_n be d d-dimensional independent random (column) vectors with standard normal distribution, n \minus{} 1 > d. Furthermore let \overline Z \equal{} \frac {1}{n}\sum_{i \equal{} 1}^n Z_i,  S_n \equal{} \frac {1}{n \minus{} 1}\sum_{i \equal{} 1}^n(Z_i \minus{} \overline Z)(Z_i \minus{} \overline Z)^\top be the sample mean and corrected empirical covariance matrix. Consider the standardized samples Y_i \equal{} S_n^{ \minus{} 1/2}(Z_i \minus{} \overline Z), i \equal{} 1,2,\dots,n. Show that \frac {E|Y_1 \minus{} Y_2|}{E|Z_1 \minus{} Z_2|} > 1, and that the ratio does not depend on d d, only on n n.