MathDB
Group theory operations

Source:

October 31, 2019
group theoryabstract algebra

Problem Statement

Let be a natural number n2, n\ge 2, a group G G and two elements of it e1,e2 e_1,e_2 such that e2e1x=xe2e1, e_2e_1x=xe_2e_1, for any element x x of G. G. Prove that (e1xe2)n=e1xne2, \left( e_1xe_2 \right)^n =e_1x^ne_2, for any element x x of G, G, if and only if e2e1=(e2e1)n. e_2e_1=\left( e_2e_1\right)^n.
Ion Bursuc