MathDB
Canadian Mathematical Olympiad - 2011 - Question 5

Source:

April 6, 2011
number theory proposednumber theory

Problem Statement

Let dd be a positive integer. Show that for every integer SS, there exists an integer n>0n>0 and a sequence of nn integers ϵ1,ϵ2,...,ϵn\epsilon_1, \epsilon_2,..., \epsilon_n, where ϵi=±1\epsilon_i = \pm 1 (not necessarily dependent on each other) for all integers 1in1\le i\le n, such that S=i=1nϵi(1+id)2S=\sum_{i=1}^{n}{\epsilon_i(1+id)^2}.