MathDB
f(x+y) is at most f(x)+f(y), which is at most x+y

Source: Pan African Olympiad 2008

October 1, 2011
functionalgebra proposedalgebra

Problem Statement

Determine all functions f:RRf:\mathbb{R}\to\mathbb{R} satisfying f(x+y)f(x)+f(y)x+yf(x+y)\le f(x)+f(y)\le x+y for all x,yRx,y\in\mathbb{R}.