Let f,g,h:R→R be continuous functions and X be a random variable such that E(g(X)h(X))=0 and E(g(X)2)=0=E(h(X)2). Prove that E(f(X)2)≥E(g(X)2)E(f(X)g(X))2+E(h(X)2)E(f(X)h(X))2. You may assume that all expected values exist.Proposed by Cristi Calin