MathDB
expected mess

Source: ICMC 2021 Round 2 P3

December 12, 2021
expectationICMCcollege contestsInequality

Problem Statement

Let f,g,h:RRf,g,h : \mathbb R \to \mathbb R be continuous functions and XX be a random variable such that E(g(X)h(X))=0E(g(X)h(X))=0 and E(g(X)2)0E(h(X)2)E(g(X)^2) \neq 0 \neq E(h(X)^2). Prove that E(f(X)2)E(f(X)g(X))2E(g(X)2)+E(f(X)h(X))2E(h(X)2).E(f(X)^2) \geq \frac{E(f(X)g(X))^2}{E(g(X)^2)} + \frac{E(f(X)h(X))^2}{E(h(X)^2)}. You may assume that all expected values exist.
Proposed by Cristi Calin