Source: Romanian District Olympiad 2018 - Grade XII - Problem 1
March 10, 2018
functioncontinuitysupremum
Problem Statement
Let F be the set of continuous functions f:[0,1]→R satisfying max0≤x≤1∣f(x)∣=1 and let I:F→R,I(f)=∫01f(x)dx−f(0)+f(1).a) Show that I(f)<3, for any f∈F. b) Determine sup{I(f)∣f∈F}.