MathDB
1995 China mathematical olympiad problem 1

Source: 1995 China mathematical olympiad problem 1

September 14, 2013
inequalities unsolvedinequalities

Problem Statement

Let a1,a2,,an;b1,b2,,bn(n3)a_1,a_2,\cdots ,a_n; b_1,b_2,\cdots ,b_n (n\ge 3) be real numbers satisfying the following conditions: (1) a1+a2++an=b1+b2++bna_1+a_2+\cdots +a_n= b_1+b_2+\cdots +b_n ; (2) 0<a1=a2,ai+ai+1=ai+20<a_1=a_2, a_i+a_{i+1}=a_{i+2} (i=1,2,,n2i=1,2,\cdots ,n-2); (3) 0<b1b2,bi+bi+1bi+20<b_1\le b_2, b_i+b_{i+1}\le b_{i+2} (i=1,2,,n2i=1,2,\cdots ,n-2). Prove that an1+anbn1+bna_{n-1}+a_n\le b_{n-1}+b_n.