Source: 1995 China mathematical olympiad problem 1
September 14, 2013
inequalities unsolvedinequalities
Problem Statement
Let a1,a2,⋯,an;b1,b2,⋯,bn(n≥3) be real numbers satisfying the following conditions:
(1) a1+a2+⋯+an=b1+b2+⋯+bn;
(2) 0<a1=a2,ai+ai+1=ai+2 (i=1,2,⋯,n−2);
(3) 0<b1≤b2,bi+bi+1≤bi+2 (i=1,2,⋯,n−2).
Prove that an−1+an≤bn−1+bn.