MathDB
exist a1,a2,...,an for n-1-Iran 3rd round-Number Theory 2007

Source:

July 28, 2010
modular arithmeticnumber theory

Problem Statement

Prove that for any positive integer n3n \geq 3 there exist positive integers a1,a2,,ana_1,a_2,\cdots , a_n such that a1a2anai(modai2)i{1,2,,n}a_1a_2\cdots a_n \equiv a_i \pmod {a_i^2} \qquad \forall i \in \{1,2,\cdots ,n\}