MathDB
Nice application of Cesaro-Stolz

Source:

July 5, 2020
Cesaro-Stolzreal analysisSeqeunceSequence

Problem Statement

Let be a sequence (xn)n1 \left( x_n \right)_{n\ge 1} having the property that limn(14(n+2)xn+215(n+1)xn+1+nxn)=13. \lim_{n\to\infty } \left( 14(n+2)x_{n+2} -15(n+1)x_{n+1} +nx_n \right) =13. Show that (xn)n1 \left( x_n \right)_{n\ge 1} is convergent and calculate its limit.
Cosmin Nițu