MathDB
vectorial geometry

Source: Romanian District Olympiad, Grade IX, Problem 4

September 24, 2018
geometrycontestsOlympiad

Problem Statement

Let be a circle centeted at O, O, and A,B,C, A,B,C, points situated on this circle. Show that if OA+OB=OB+OC=OC+OA, \left|\overrightarrow{OA} +\overrightarrow{OB}\right| = \left|\overrightarrow{OB} +\overrightarrow{OC}\right| = \left|\overrightarrow{OC} +\overrightarrow{OA}\right| , then A=B=C, A=B=C, or ABC ABC is an equilateral triangle.