MathDB
USAMO 2002 Problem 4

Source:

September 30, 2005
functional equationUSAMO

Problem Statement

Let R\mathbb{R} be the set of real numbers. Determine all functions f:RRf: \mathbb{R} \to \mathbb{R} such that f(x2y2)=xf(x)yf(y) f(x^2 - y^2) = x f(x) - y f(y) for all pairs of real numbers xx and yy.