MathDB
Romania District Olympiad 2004 - Grade XI

Source:

April 10, 2011
linear algebramatrixcalculusderivativealgebrapolynomiallinear algebra unsolved

Problem Statement

Let A=(aij)Mp(C)A=(a_{ij})\in \mathcal{M}_p(\mathbb{C}) such that a12=a23==ap1,p=1a_{12}=a_{23}=\ldots=a_{p-1,p}=1 and aij=0a_{ij}=0 for any other entry.
a)Prove that Ap1OpA^{p-1}\neq O_p and Ap=OpA^p=O_p.
b)If XMp(C)X\in \mathcal{M}_{p}(\mathbb{C}) and AX=XAAX=XA, prove that there exist a1,a2,,apCa_1,a_2,\ldots,a_p\in \mathbb{C} such that:
X=(a1a2a3ap0a1a2ap100a1ap2000a1)X=\left( \begin{array}{ccccc} a_1 & a_2 & a_3 & \ldots & a_p \\ 0 & a_1 & a_2 & \ldots & a_{p-1} \\ 0 & 0 & a_1 & \ldots & a_{p-2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & a_1 \end{array} \right)
c)If there exist B,CMp(C)B,C\in \mathcal{M}_p(\mathbb{C}) such that (Ip+A)n=Bn+Cn, ()nN(I_p+A)^n=B^n+C^n,\ (\forall)n\in \mathbb{N}^*, prove that B=OpB=O_p or C=OpC=O_p.